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December 25, 1961

National Aeronautics and Space Administration
1512 H street, N.W.
Washington 25, D.C.

Attention: T.L.K. Smull, Director
Office of Research Grants and Contracts
Office of Space Sciences

Subject: Final Report on Contract No. NAwW-6559
Gentlemen:

In the present letter an attempt is made to summarize the activities
which have taken place under your sponsorship in connection with contract
NAw-6559. 1In a sense, this letter is a final report in name only. While
certain phases of the investigation have been carried to a conclusive stage,
other phases are being further investigated. The writer would like to ex-
press his appreciation for the support received thus far. The study initi-
ated under this contract is continuing and is, at least to some extent,
being supported under a different grant. As further results pertinent to
the present contract become available your office will be kept fully in-
formed and supplied with copies of future reports or reprints of future
publications.

The subject which was to be studied under this contract is rather broad
and has therefore led to a number of fairly independent investigations. The
question of the vibration and flutter of buckled panels of finite aspect ratio
has received relatively little previous attention. Presumably this is due to
the substantial mathematical complexity of the subject matter. In particular,
the configuration into which a panel may buckle as a result of edge pressures,
thermal expansion, ete., is governed by a system of nonlinear equations for
which exact solutions are available only in an exceedingly small number of
cases. This being so it is obvious that the dynamic response poses even
greater difficulties. Approximate schemes have been devised making use of
energy relations or through the application of the Galerkin-Bubnov method
which, for the self-adjoined case, are equivalent. The accuracy of such
approximations, however, has never been demonstrated fully satisfactorily.

One of the few exact solutions to the static problem (exact, that is, with-
in the framework of the equations of von Khrmhn) is the one due to Friedrichs
and Stoker,* which gives a solution to the postbuckling behavior of a circular
blate under increasing radial pressure and under the assumption of radially
symmetric deformation. The vibration of a plate about its buckled state rep-
resents one of the major efforts of the present contract and. in fact. one

*See Ref. 12 (Appendix). N 6_6_;_80 59 6 ;
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which has been carried out fully. The calculations are based on small vibra-
tion amplitudes relative to the static configuration; however, the assumption
of radial symmetry of the vibrating mode is not retained.

A detailed description of the method as well as of the results is given
in the Appendix. I would like to acknowledge the help and cooperation re-
ceived from B. Herzog, who carried out most of the calculations and who was
in charge of the rather involved computer program. Mr. Herzog used the sub-
ject as a basis for his Ph.D. dissertation.

The method employed can be termed "exact" in the same sense as any
truncated power serles development can be so defined. Near the initial point
of instability a perturbation scheme was employed, which expresses the dynamic
behavior of the structure near the singular point which is identified with the
loss of stability. The convergence of the perturbation method diminished rap-
idly for increasing static amplitudes; a power series development was. there-
fore resorted—to, whose convergence remained adequate within the capacity of
the available computing facilities.

The results of the calculations are shown in Figs. 1, 2, and 3. It is
seen that the stiffness of the structure, as represented by its lowest fre-
gquency of vibration, increases rapidly as buckling proceeds. It is also seen
that the "fundamental' mode of vibration—that is, a radially symmetric mode
exhibiting no nodes-—ceases to be fundamental, while the lowest frequency is
associated with modes which, for the unbuckled case, are considered of higher
order. This is not surprising since the plate becomes similar to a shell and
therefore develops a tendency to vibrate as much as possible in an incompres-
sible manner.

It is interesting to note that, at least within the limits of the cal-
culations carried out, no frequency becomes imaginary. In the authors' closure
to the discussion of their paper, the argument had been advanced by Friedrichs
and Stoker that the development of nonsymmetric ripples, which are observed in
experiments, may be due to the fact that the symmetric buckling mode might it-
self become unstable. If this were so, the expansion of the potential energy
near the static configuration should cease to be positive definite; that, in
turn, would lead to imaginary frequencies in the present study. It appears
therefore that the reasoning advanced by the authors is not likely to give a
satisfactory explanation of the phenomenon of secondary buckling. More likely,
such phenomena can be explained in terms of a snapping process similar to the
one observed in the ordinary buckling of shells.

Other phases of the work carried out under this contract have not yet
reached the degree of completion as the one described above. For example, a
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technically much more significant problem is the determination of the modes
and frequencies of vibration of buckled rectangular panels about their static
configuration. Unfortunately this problem also poses far greater analytical
difficulties than the one associated with the circulur  plate.. A study of
this problem has been initiated and is proceeding at the present time. The
writer is aveiling himself of the help of C. Woodworth, who is writing his
doctoral dissertation on this subject.

Again a perturbation approach is fruitful for an analysis of the dy-
namic behavior of the plate in the immediate vicinity of its initial buckling
point. For increasing static amplitudes this approach is again inoperative
because of the increasingly slow rate of convergence. Since power series
methods are not directly applicable for the present case solutions are pres-
ently being sought on the basis of spproximate methods of approach. Several
such approximations have been proposed in the past; these are essentially
variations of methods which, in the Western literature, are associated with
the name of Marguerre* and which have been widely applied in the Russian 1lit-
erature under the name of Papkovich. These consist essentially in finding
the stress function "exactly" on the basis of an assumed aggregate of defor-
mation functions and to make then the proper selection among this aggregate
on the basis of energy considerations.

The writer does not feel that these methods are of sufficient reliability.
It is easy to see that while the static deflection functions are obtained in
this manner with a fair degree of accuracy, such accuracy is debatable in the
case of the resulting stress functions. On the other hand the dynamic behav-
ior of a buckled panel about its static configuration seems to be intimately
related to the existing state of stress in the panel. The method being at-
tempted makes use of approximations in the stress function space** rather than
in the deflection function space; it is hoped that the results will exhibit
greater dependability, although the numerical labor involved is rather formida-
ble.

For fairly small buckling amplitudes experimental as well as highly sim-
plified analytical investigations have led to the observation of flutter phe-
nomena which were not confined to small amplitudes, but which involved com-
plete snapping operations through the unbuckled configuration. This is a prob-
lem which is nonlinear in both its static as well as its dynamic parts. As
expected, only approximate methods are likely to be usable for this case.

Extensive work has been carried out, and is continuing to be carried
out, by the writer and Dr. J. Eisley of the Department of Aeronautical

*See, e.g., Ref. 9 (Appendix).
*¥For the static case the method is described in Ref. 19.
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Engineering of The University of Michigan. This involves both the question
of free vibrations as well as the development of flutter, for which both
linear and nonlinear aerodynamic theories are being used. For the one-degree-
of-freedom system exact solutions to the resulting nonlinear equations are
easily found in terms of elliptic functions. This is in essence similar to
the work of Chu and Herrmann,* who, however, have not included in their work
the effect of buckling stresses.

A two-degree-of-freedom system is presently being investigated. This
is necessary from the practical point of view since the actual flutter mode
of the buckled panel must necessarily include at least one higher mode.
Analytical solutions have been found and are being extended; these are being
checked against solutions obtained through the use of analogue computers.

Two more phases are actively being pursued. 1In one the writer, with
the assistance of D. Beaty (another Ph.D. candidate) is analyzing the dynamic
response of a spherical shell under external pressure. This is done by em-
ploying a method first proposed by Koiter in a little known paper. It is
hoped that this study will throw some light on the continuing controversy
over the discrepancy which exists between classical buckling theory and ex-
perimentally observed results relating to the instability of spherical shells.
An experimental program supplementing the analysis is being carried out to
verify the data obtained analytically.

Recently the writer engaged R. Armstrong in a study of the dynamic
response of a cylindrical shell which is subjected to a time-dependent
axial force. This work, which represents Mr. Armstrong's Ph.D. thesis,
is to include the effect of longitudinal waves in the shell. Similar
studies have been carried out by E. Sevin in connection with the buckling
of simple struts; in that case the effect of the longitudinal waves was
found to be negligible as compared with the simplified dynamic analysis
conducted some years ago by N. J. Hoff. In the case of shells, however,
it is not certain that the presence of longitudinal waves may not have a
profound effect on the stability of the shell since, unlike the case of
the simple column, an expansion of the potential energy exhibits third
order terms. This means that for sufficiently strong longitudinal waves
the membrane energy may be converted into energy of such amplitude as to
propel the shell "over the hump."

*"Influence of Large Amplitudes on Free Flexural Vibrations of Rectangular
Elastic Plates," by Hu-Nan Chu and G. Herrmann, J. Appl. Mech., Vol. 23,
No. 4, 1956, ASME.
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This represents a brief resume of the work already initiated and /or
completed. TFurther work is presently being contemplated, and the writer
will deem it a privilege to keep you fully informed with regard to all
future findings.

Very truly yours,

E.F: Maary

E. F. Masur
Professor of Engineering
Mechanics and Project Director

EFM:mh
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1. INTRODUCTION

Modern engineering structures have been experiencing a very
rapid decrease in their "thickness" dimension as severe weight (and
other) limitations have been imposed during recent years. As a consequence
many structures are used in a post buckled state, that is to say the loads
sustainéd are greater than those predicted in the usual "Euler column"
sense. The motivation for this state of practice is obvious, however,

a safe road to design remains to be paved. In addition, structures
loaded in this manner are frequently expected to survive an environment of
dynamic forces while subjected to these high static loads. The purpose of
the present study is to determine the dynamic characteristics of such a
structure. The results of this study are in the form of the natural fre~
guencies and shapes of the modes of vibration of a circular plate as the
function of a load parameter.

The free vibrations of elastic bodies or structures about an
equilibrium configuration have been studied extensively. The natural
frequency of vibration and the shape of the mode of vibration are the
most important features which are obtained out of the solution of an
eigenvalue problem.

If such a body or structure is first preloaded statically, then
the resulting frequency and mode of vibration exhibit interesting fea-
tures. 1In general, a tensile system of stresses or forces causes an in-
crease in the frequenc& of vibration, while compressive forces serve to
decrease the freguency of vibration. The initial loading affects the

effective stiffness of the structure and 1in the case of a compressive

-1~



.2 -

loading the effect is such as to reduce the stiffmess to zero, which

is indicated by zero frequency of vibration, and thus buckling of the
structure in the conventional sense occurs. Indeed, a dynamic approach
to the evaluation of buckling loads predicts buckling when the fregquency
of small vibrations about the static configuration goes to zero.

The most straightforward example of such a problem is the
lateral vibration of an elastic bar which is axially loaded.(l) The
mode shape is sinusoidal for a simply supported bar, and the square of
the frequency of vibration is linearly related to the axial force (or
an associated loading parameter). Lurie(e) has discussed several ex-
amples related to vibration and structural stability and cites both
theoretical apd experimental results. He shows that, in general, within
the framework of linear theories, whenever the mode shape of buckling and
of vibration in the presence of axial loads is the same, then the inter-
action curve between the square of the frequency and some monotonic
increasing load parameter will always be linear. Massonnet(B) discusses
this same subject extensively, but frequently has to resort to approxi-
mate means, such as the Rayleigh-Ritz method, to solve the problem.
These problems are solved within the framework of a linear theory.

The buckling problem is phrased as an eigenvalue problem of
the linear theory where the eigenvalue is associated with the critical
load and a buckling mode of undetermined amplitude is obtained. These
results imply no lateral deflection (the trivial solution) or that
buckling occurs suddenly and with uncontrolled amplitude. That this
paradoxical situation never arises in reality is explained by the

presence of some imperfections, either in the structure or in the



loading system, which always insure that the structure deflects
laterally as the load reaches the critical value. Even a crude
experiment with a simple column shows that t e structure does not
collapse violently as the critical load is reached; however, the
deflections do become large. The effects of these large deflections
are not fully included in a linear theory. In order to discuss such
phenomena more adequately, an improvement in the theory is made which
results in nonlinear differential equa£ions. In the case of a plat
such equations were given by von {rmel .(h) |

The solid circular plate is the structure to be investigated
here. The linear equations of the classical theory of plates have been

(5,6)

solved extensively. The buckling of a circular plate was first
studied by Bryan. (') Federhofer(8) studied the problem of the vibrating
clemped edge plate subjected to edge loads and presented extensive results
of the interaction between compressive (and tensile) forces and the fre-
quency of lateral vibration of the plate.*

There exist relatively few solutions for the nonlinear equa-
tions for plates, introduced in 1910 by von Ké%méi. The problem is
particularly difficult for rectangular plates where several approximate

(9)

methods have been introduced, in particular by Marguerre, Bisplinghoff
and Pian(lo) treated the case of vibration of a rectangular plate of
infinite length and some cases for plates of finite length. For the
circular plate, however, several more solutions are available. Way(ll)
solved, by power series methods, the problem of & circular plate subjected

to lateral load. Friedrichs and Stoker(la’lj) used perturbation and

* During the course of the present investigation it was necessary to
solve such equations for a simply supported plate. Results similar to
those of Federhofer for the clamped edge plate are presented in the
Appendix B.



povwer series methods to solve the problem of the simply supported
circular plate subjected to compressive radial loading (in the plane
of the plate). They treated only the axially symmetric case in a
very exbaustive manner. A nonsymmetric version is beset by consider-
ably more mathematical difficulties. The methods of these writers
were applied by Bodner(lu) to a clamped edge plate for the same type
of loading. Bromberg(ls) used the methods utilized by Friedrichs and
Stoker to study the effect of very large lateral loads which give rise

(16)

to certain instabjlities. Keller and Reiss applied numerical
methods to the problem discussed by Friedrichs and Stoker. Similar
problems are studied by Alexeev(l7) and as a special case in a paper

(18) (19)

by Panov and Feodossiev. Masur , in a paper published in
1958, utilized a stress function space together with a minimum energy
principle to obtain a sequence of solutions with error estimates for
the post-buckling behavior of a plate using the von Ksrmeh equations.

In a recent paper, Massonnet(eo)

considered the effects of
initial curvature on the natural frequencies of vibration of an edge-
compressed, clamped edge, circular plate. He solves the static problem
by the method of Friedrichs and Stoker and then assumes that the mode
shape of vibration is the same as that of the static problem, and
utilizing the Rayleigh-Ritz method obtains the approximate frequency
of vibration.

The present study is concerned with the linearized vibrations
of a circular plate relative to a static buckled configuration which is

governed by the von Kerman equations. The plate is subjected to radial

displacements which are the cause of the buckling and post buckling




equilibrium behavior. Although these boundary conditions are differ-
ent from those of Friedrichs and Stoker, they are nevertheless mathe-
matically equivalent for the static problem. It is here possible,

however, to treat the problem of nonsymmetric vibrations relative to

a symmetric buckling or static configuration.




IT. FORMULATION OF THE PROBLEM

For a preliminary consideration of the differential equations
governing the present problem consider the xy plane of a cartesian coor-
dinate system to be the middle plane of the plate. The z direction is
the direction of the lateral deflection. Such a plate may be subjected
to membrane forces in the plane of the plate and lateral loads in the z
direction. The thickness of the plate is h. In the absence of body
forces in the x and y directions there are two relevant differential
equations due to von Kﬁ%mﬁh.(h) The Equation (2.1) represents the equa-
tion of lateral equilibrium while compatibility is expressed by the

Equation (2.2).

])MW - cj-achF’ ﬁ,ij = P (2. l)
- _ Eh - -
AAF F’iijj = -3 Cigf3p"rapVr1j
= - Eh(»‘w,ﬂﬁ,yy - w'r',xy?,xy) (2.2)

where A represents the Laplacian operator, F is the Airy stress function,
W is the lateral deflection of the plate and p is the load per unit area
applied to the lateral surface of the plate. Further, the flexursl
rigidity is

Eh’

D = _ER’
12(1-v2)

where E is the Young's Modulus of Elasticity and v is Poisson's Ratio,

6=




and
e o Jo1
ij 10

Inherent in the utilization of these equations is the inclusion
in the strain displacement equations of nonlinear terms involving the
derivatives of W with respect to x and y.

For a moving plate the inertia terms which are due to the
motion of an element of the plate in the plane of the plate are neglected
in comparison to those due to the lateral motion.* These inertia terms,
which in actuality represent body forces, may, in this case then, be

treated as the lateral load

p = .-~ph5;2' (2.3)

where p is the mass per wmit volume.

Only small aﬁplitude harmonic vibrations with respect to the
static configuration of larger amplitude are considered. Consistent
with this assumption the following partitioning of the stress function F,

the displacements, strains and other quantities is proposed
F = FS 4+ expDelwt

is + e*?Deﬂ”t

eij = eij + e*e]gjem

N, + e
iJ

w

(2.%)

15 = Ny
where eij and Nij are the cartesian components of the membrane strains

and stresses, while @ is the circular frequency of vibration and e* is

an arbitrary, small parameter,

* For a discussion to this point see references (21) and (22).
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The membrane stresses Nij are derivable from the stress
funetion F by

Vij = Cia%jpfap (2.5)

The membrane strains eij are related to the stresses by

= E% [(l+v)Nij - VN By (2.6)

©13 5]

where Bij’ the Kronecker delta, has wvalues

10
8. =
4= Lo 3]

Substitution of these quantities in Equations (2.1) and (2.2) and retain-
ing only those terms which contain €¥ to the power of one or less yields
two sets of differential equations, one governing the static problem and

the other governing the dynamic problem. These are

S S _S _
DMw - il B ’OB = 0
(2.7)
S _ Eh
A= -5 ciacjav’?osz’?ij
DM@ = 1chB(F:QﬁW:1J + F,wW,lJ) = pmzﬁj
(2.8)
S =D
AAFD = -Eh ciacjsw’aﬁw’ij

Since all detailed discussions of this plate are for a solid
ciréular one, of outside radius R, the problem is rephrased in terms
of the polar coordinates. The static configuration is assumed to be
axially symmetric. However, permit a nonsymmetric dynamic configuration.

In particular, all quantities are chosen in the following form™ without any

* Henceforth, unless otherwise noted, a sumation symbol not having the
summation limits specified is intended to be summed over n from O to



significant loss of generality:

T = GS(r) 2 = E:Gg(r) cos né
F - P =o P - yv-g(r) sin 16 + (£)° Bxr

E:Gg(r) cos n@ (2.9)

P = P() P
P j;\Fz(r) cos né

Fo F(r)

i
il

where the u and v variables represent the displacement components in the
radial and tangential directions respectively.
Simultaneously it is advantageous to render all pertinent

quantities in these equations dimensionless, and for this purpose let

x = =
R
. R =5 _ R D
U= =u uy, = oy,
7 V4
_ R =5 _ R =D
Vo= v o= 2
=D (2.10)
= .
VJ:z—?s wn::....r.l..._
4 7
D
@-ﬁ ¢n-§l__
- D - D
2
where 72 = h?/lE(l—v ).

By the use of the above expressions the differential equations

for the static case become,

W - Slc—(cn'w')' = 0 (2.11a)
and Ho =-1_ (W'w ) (2.11b)
2x

where Vz() =1 [x( )']* and primes designate differentiation with
X

respect to x.
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The dynamic case for the nth mode¥ is governed by
2.2 2
(V¥ - 22) W o- L (o) 4 B gn am (2.12a)
x x %2
1 n' n2 1
-2 AN =
b'd
2.2 n 1 2
and (V - L) g% = - [x (W) - 52 W] (2.12b)
2 2
where p(n) = gk—]%ﬁ'\n

In order to be able to state the boundary conditions clearly,
we rewrite all of the quantities involved, including moments, stresses
and strains, in terms of the non-dimensional quantities. This is a
matiter of formal substitution and the results are listed below. As
an example, consider in detail the radial strain and the radial stress.
The radial strain for the dynamic configuration is defined as

p ., F®
dr

rr or or

where as before the superscript D refers to the dymamic configuration
and the superscript S refers to the static one. In terms of the dimen-

sionless quantities define a strain as

; d.\ln dW dw : ;l n
eXX = (3 + —3 "—3 cos ne = e cos ne

2
D - (X
and hence e_ = (R e

Consider now the definition for the radial stress component Nﬁr. The

static membrane stress (as obtained from the stress function o), is
_1 o=
I‘I‘—rdr

¥ Separation into modes is possible because of the assumed axial
symmetry of the static solution.
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The corresponding non-dimensional stress can be defined as

Tyx

1 ae
x dx

and as a consequence the relationship among these two stresses is

D
S

Similarly the various dimensional stresses and strains are as listed

below with their relationship to the dimensionless quantities.

N>

rr

8o §b b gv

1o

%)

Consequently the

quantities are:

n

D 1 _ D
Ex TRk
D g D
o' = L
B2 R
0 = T4 (2.13)

2
D 1 n D n
EE Z (;C- ¢n' - §2 ¢Il) cOosS n@ = R?- Z‘bn cos ne
D m'" _D n
5 z g cos nG—-é-é z tgg cOs 1o
D n (Ln)" sin ne = D Ztn sin n@
R X B2 x0

stress strain relationships among the dimensionless

=i
8
]
<)
8
]
5
o
[
o
[ ]
H<
°

(2.1%)
n 1 1 2 "
b - Vigg =5 £ -5 # - P
" l \ 2
00 = Vi = # - v(z 87 - B )

2(1 + via(z #*')

QiE &
ct
B
L]
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since G = E/2(1#v).

FPurther the relationships among the bending moments are:

w o= (L) (w +Lw) = p(%)% m,
. = QPG W+ wr) =My,

M = 0 =M

re xe

" ' 2
= _D(g)zi Ll v(% v %wn)] cos n0  (2.15)

rr

1]}

2
D(%) Z mnXX cos n®

: 1 2 "
v = -D(%)Ey [%wIl -Ezwn+vwn]cos ne
L X

742 "
D(R) Z myg COS 1o

M, = D(l-v)(%)az n(- w2 + ;w_;) sin ne

X

D(%)EE mie sin ne

The appropriate boundary conditions for a circular plate must
now be considered. It is convenient to consider the relevant conditions
for the static equations apart from those associated with the differen-
tial equations governing the vibration motion. Let the plate be simply
supported at its circumference. The usual interpretation of "simply
supported"” is to consider that both the deflection at the support and
the radial resisting moment offered by the support are zero. However,
a theory that includes membrane effects must in addition specify a

restriction, at the boundaries, upon the membrane displacements or



“1%3-

stresses. Thus for the static problem a radial displacement at the
support is specified. Alternately, the radial membrane stress can
be specified, which is indeed the manner in which Friedrichs and
Stoker(lB) chose to state their problem. However, since this investi-
gation is primarily concerned with the dynamic problem a displacement
condition appears more appropriate. The effects upon the static prob-
lem depending upon the nature of the membrane boundary condition
specification are equivalent for either of the above cases. Physically
the most realizable situation is to specify a zero radial displacement
of the plate at the edge and then consider the effect of uniform
heating of the plate (the supporting structure being assumed rigid
in the usual sense as well as with respect to temperature changes).
Thermal effects would require an additional term in Equation (2.2) and
make the boundary condition homogeneous, which again i1s mathematically
equivalent to the situation chosen here.

Thus the boundary conditions governing the solution of the

static problem are

By(w) = w(1) = o0 (2.16)
Bo(W) = (W' - Zw )y = O (2.17)
and Eg(l) = = xGE (2.18)

Here Eﬁ is the magnitude of the radial displacement which is reguired
to cause the plate to buckle in the usual or linear, Euler, sense. The
term A is a parameter determining the extent to which the post buckling
domain is penetrated. This third condition is conveniently rephrased

in terms of the stress function &. Utilizing the relationship between
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|
u_JS and egg for & symmetric configuration, one finds
=5 _ S
ut o= X egy

Consequently, by Equation (2.1L4)

i
]

B5(0) = x[x(3 o)t + (Lv)(x0")] _ =- Mg (2.19)

where U = B’Z TJE
V4

The boundary conditions for the dynamic equations require more

careful consideration as a consequence of the permitted occurrence of non-
symmetric modes. Ageain the notion of simple support implies that
B(v) = 0 (2.20)
and By(v?) = 0 (2.21)
Consistent with Equation (2.9) the prescribed membrane displace-

ments at the boundary take the form

z A, cos né

Z B_ sin no + B
n

u(1,0)

(2.22)

v(1,0)

where the A's and B's are specified.

It appears then that a specification of A and B, provides the
necessary number of conditions required of the problem. For the axially
symmetric case, n = 0, v is identically zero (plus the possibility of
rigid body motion) and just one condition needs to be imposed to specify
the problem completely. However, a notable situation exists when n = 1.
It can be shown™* that in this case, also, just one additional condition

is sufficient to specify the problem completely.

** Mhis and other details for the case , n =1, are carried out in detail
in Appendix A.
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The situation for n = O permits choosing the boundary condition
which is similar with that for the static case, i.e. zero radial dis-

placement, which in turn is synonymous with
@) = o (2.23)
(212]

Furthermore, this same condition is admissible and sufficient for n = 1.
These are the only cases for -which c omputations are carried out. Conse-

quently the third boundary condition used for the dynamic case is

() = B0 = -vE P -GN =0 (2.24)

withn =0, 1.



III. THE PERTURBATION SOLUTION

In recalling the differential equations and boundary condi-
tions governing the problem, we consider first the static case. It is

required to solve the following differential equations

- L (ew) = o (2.11a)
X
L% 1 1
T = - =— (WwW 2.11b
= (Wiwr) ( )

and the associated boundary conditions**

Bl(W) = 0 (2.16)
B,(W) = © (2.17)
133(@*) = -\ (2.18)

It is convenient here to partition the stress function such that

o* = M+ O (3.1)

where the function ¢, satisfies the differential equation

N
Vo, = 0 (3.2)

and the boundary condition

By(0,) = -Ug (3.3)
Consequently, the function ¢ satisfies the differential egquation
o = - L (wwr) (3.1)
2x
and the boundary condition
B5(®) = 0 (3.5)

** Tt should be understood that the regularity requirements at the origin
are being considered implicitly.

w]lBm
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The first of these equations will be recognized as the usuasl
problem of plane elasticity whose well-known solution for the solid
disk is

Txe
o = -IX (3.6)
2

r - UE
1-v

where

and where Uy is found in Equation (3.17).

In order to proceed to the topic of this thesis, it is first
necessary to reproduce the solution previously obtained by Friedrichs
and Stoker. There are two reasons that necessitate the repetition of
this work. First, although these writers have completely solved this
problem, their results are presented in such a form as not to permit
direct application to the present work. Secondly, they were able to
simplify the problem by a substitution of variables for W and for
the stress function thereby reducing the order of the differential
equations and making them directly integrable, at least in part. This
is not possible here, since in the dynamic equations, due to the inertia
term, w will appear explicitly and hence neither the integration nor
the substitution of variables appears to be possible. Consegquently, it
is necessary to proceed with a solution in terms of W and ¢ following,
however, the example set forth by Friedrichs and Stoker.

Assume the functions W, &, and A to be expandable in perturba-

tion series:¥*

* Tt can be shown that the other terms vanish.
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W o= W, + e3w3+e5w5+
2 4 6

© = €70y + €0y + €0 + *c0n (3.7)

2 L
)‘o+€)2+€}‘l++

v
|

Here € 1is the perturbation parameter which will be chosen as
a monotone increasing function whose direct significance will be fixed
at a later point in the development. It will eventually be related
directly to the amount of deflection in this problem. On the other
hand, it could represerit the amount of redial displacement or, indeed,
it could be any other monotone increasing function.

Substitution of these perturbation expansions in the differen-
tial equations and boundary conditions yields a sequence of differential
equations, with associated boundary conditions, when coefficients of like
powers of € are equated. Consider now the various differential equations.
It will be recognized that associated with €0 we obtain the equation whose

solution is the function <b°.

For el the differential equation is
1 vyt
vl‘wl - = lo(tbowl) = 0 (3.8)

or alternately by Equation (3.6)

L (W) = v*‘wl+ AT _i.(xwi)' = 0 (3.9)

and the boundary conditions are

!
o

By (W;) (3.10)

B,(W;)

1l
(o

(3.11)

This is seen to be the linear eigenvalue problem for the buckling of the




plate subjected to compressive edge traction or displacement (loT
represents the elgenvalue of the problem). There exists an infini‘y
of eigenvalues and the solution to the problem may be represented

a development in the form of the associated modes or eigenfunctions¥* as

W, = X A](_m) H, = z Agm)[Jo((xmx) - I (ap)] (3.12)
m=1 m=1l

This solution automatically satisfies the boundary condition B,. The
elgenfunctions must satlsfy +the assoclated characteristic equation
which is obtainable from the boundary condition B2. The characteristic
equation for the m‘t‘h mode 1s

(1 +v)Jy (o) + adolay) = O (3.13)
where Jp(x) is the Bessel function¥* of the first kind and of order p
and oy is a root of the characteristic equation. There is an infinite

number of such roots.,

However, o, 1s related to l(m) and T through the differential

(o)

equation by
N (3.14)
o m

m
Consequently the characteristic equation determines )‘c(> )T. Since the

interest here centers arpund the first buckling mode, i.e. the symmetric

one, only the lowest elgenvalue and its assoclated elgenfunction 1s

% Superscripts in parentheses are intended to identify the variable ana

not to act as an exponent. Wherever possible, however, parentheses will
be omitted whenever there 1s no possible confusion and will be included

only to avold confusion in 1solated cases.

¥*In view of the varying defintions for the varilous Bessel functions,
the ref. (23) is used as a standard throughout this thesis to avoid
possible confusion,
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considered. Consequently

W= AP (ogx) - 3 (ay)] (5.15)
and lgl)T = aﬁ (3.16)

It is convenient to choose

A = A = 1
o] o]
whereby
T = a?
1
Furthermore, let
1
RE N
1

This choice governs the selection of €. Having obtained T, the value

of UE is now determined,

U = (Lv)T = (l-v)ai (3.17)

The above-mentioned eigenfunctions form a complete set of func-
tions satisfying the boundary conditions at x = 1 and the regularity
conditions at the center of the plate and may be utilized in developing
expressions for other functions by the familiar expansion property of
eigenfunctions. This property will be utilized extensively in the sub-
sequent paragraphs. ¥

For €2 the differential equation for ¢2 is obtained,

1
Vo, = -=—(Ww) .
5 =, (W) (3.18)

in which Wl represents the function just obtained.

¥ For a detailed discussion of systems of eigenfunctions and their
properties see ref. (24) or (25).




The associated boundary condition is

Bj(2,) = 0O (3.19)

The equation is partially integrable and upon using the regularity con-
ditions at the origin the following expression in closed form is obtained

through the use of familiar recursion relations, reference (23),

2
Go) = - e - sla) Iy (0] (5.20)

Further integration of this expression seems impossible except by sub-
stitution of an infinite series. When this is done and another integra-

tion performed, the result is

2r

ag ® r . X2+
SRR R
r=0 °° : :

Further integration is not necessary since the function @2 will not be

needed explicitly. The constant C can be determined from B5'

3

For €7 the differential equation governing W5 is obtained

L(Wz) = Fz(x) (5. 22)
where
P x) = T 2(00)" + F(x)
= - };{ M)+ Fix) (3.23)
and where
F;(x) = i(@éwi)v (5. 21)
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The associated boundary conditions are
Bl(W3) = 0 (3.25)
Bz(w5) = 0 (3.26)
The differential equation here is nonhomogeneous, but the
associated homogeneous equation is identical with Equation (3.9). This

homogeneous system has the nontrivial solution W;. Hence the nonhomo-

geneous differential equation may have no solution or, if it has a solution,

then this solution is not unique inasmuch as there can be added to it any
arbitrary® multiple of Wl. In order that the above nonhomogeneous equa-
tion possess a solution, the right hand side must satisfy an orthogonality

condition which is, in this case,

1
f F3(x) HBxdx = O (3.27)
o
This orthogonality condition serves to determine the coefficient 2,
le*H x dx flcb'H*H' dx
\, o 31 = o 211l (3.28)

1 T
T [ x(xH!)'H, dx T [ xH'H!'dx
5 171 5 11

The particular sclution can now be constructed and the procedure con-
tinued to determine further perturbation coefficients and functions.
However, as will become apparent in the sequel, there is no need to
pursue the solution of the equilibrium problem beyond this point.

Turning now to the subject of this thesis, which is the vibra-
tion of the plate in the presence of the static or initial configurations
and the associated equilibrium system of stresses discussed in the pre-

vious paragraphs, it will be noted that the method of solution in the

* While the choice is theoretically arbitrary, the specific value is
selected on the basis of convenience of computation.
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dynamic case has much in common with that used above and hence only
the essential points are presented.

The equations governing the motion of the plate are (2.12a),
(2.12b) and, as a matter of convenience, they are presented again.

By substitution of (3.6), Equation (2.12a) is further simplified to

2 2 2
(F - 228 4 A (P - EP - £ (orh)' + 5 00wl
X = x (3.29)
2
i i (F)r + o g = u
2.2 ' 2
(¥ - ig) o o= - ) - Zy WwR] (2.12b)
As pointed out in Chapter II, the boundary conditions are
Bl(wn) = 0 (2.21)
B(v') = 0 (2.22)
and By(g") = o (2.2k)

if attention is restricted to the cases
n = 0
and n = 1.
In general, the functions w, ¢ and pu are expanded in pertur-
bation series utilizing the same parameter € as in the static case.
W o= wg + €2w% 4 oeeee
¢n

n _ 2 cens
3 —Ho'*'ellz“‘

e¢§ + e5¢§ 4o (3.30)

Upon substitution of these perturbation expansions* in the differential

* The fact that w" and pn are even expansions in € and that ¢n is an odd
expansion may be easily verified upon substitution in the relevant equa-
tions. For the sake of brevity these steps are omitted here.
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equations and associated boundary conditions, a new sequence of differ-
ential equations is obtained whose solution will follow very similar
methods to those presented for the static case., It will also become
apparent that the partitioning of the stress function ©* makes this
future work similar to the previous paragraphs.

For €0 the differential equation is

L(vB) = (¥ - 22)2 VB AT - %) V- bgip = 0 (3.31)
X

oo
X

and the associated boundary conditions are

By(wg) = 0O (3.32)
By(wg) = O (3.33)
The solution of this equation is
_ (m)_nm
wg = j{j ay ‘v, (3.34)
m=!
where
Tn(82") nm
vt = Jalept) - 2L 1(py %) (3.35)
1.(8y)

which immediately satisfies Bl and where In is the modified Bessel
function. This eigenvalue problem is governed by the characteristic

equations obtained in the usual fashion from the boundary conditions, B2.

I(B5™)[(2a + 1 + v)BRr,, 1 (B2®) - (BT I, ,(BE™)]

(3.36)
+ T (B (20 + 1+ v)e] T (By ) + (B )7 Tp(ey )] = O

nm nm
where By and B, are related to AT (i.e., al) and Hnm by
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2 2
(B2 - (e1M° = of
rm (3.37)
= (BTR(eM°

The functions wo- obey the usual orthogonality conditions which, in this

case, are

\/l Vi xax = 0 (3.38)
(o]

Hpm # s

and 1

‘ ) 2 2 2
[ U B PER an(T - By) WG xax = 0 (3.59)
o

It should be noted that, for a specific value of n, represent-
ing the number of nodal diameters, there exists an infinity of roots of
the above system which are designated by the index m. The index m repre-
sents the number of nodal circles appearing in the vibration pattern of
the plate, A similar system for the case of a clamped edge plate was
solved by Federhofer in 1955.(8)

For el a differentizl equation governing the function ¢§ is

obtained which is

2
(P -2 6 = - e (3.40)
X
where
' 2
g (x) = i‘(wiwg') - §§ Wiwg (3.41)

and the associated boundary conditions are

BA(¢i) = 0 (3. 42)
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This is a problem of integration; however, the form of the function

g1(x) is such that a numerical integration is evident except for n = O.

2 . . . . . . nm

For €~ a differential equation governing the deflection function LA

is obtained which is

Ly(vp ) = fp(x) (3. 43)
where
*
£,(x) = pgmwﬁm+f2(x) (3. 44)
and where
2
n n nm 1 1 LI
£X(x) = - (V- %) Vo + = (o)
2 o1 5 . (3.45)
n " n
) 22V (¢1 T2 ¢ﬁ1
and where associated boundary conditions are
B (w2 ) =0 (3. 46)
B,(Wy") = 0 (3.47)

By the now familiar process, fz(x) must satisfy an orthogonality condi-
tion in order to obtain a solution for W5 and out of this relation

nm
emerges i,

(3.48)

For the special case, n = 0, numerical results are readily
obtained. In particular the value of the rate of change of frequency
with respect to the load parameter is desired in the neighborhood of

the condition of linear buckling which is

lim g _1i du ax B
Tn oo @) = wy (5.49)

where u, and X, are defined by Equation (3.30).
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In pursuing the analytical steps outlined previously for
the symmetric mode of vibration it becomes apparent that ¢O becomes
a multiple of @, and hence from Equation (3.48) and by the use of
Equation (3.21)

I |
1 ldx
- o *hH
Mo 22T S (3.50)
é xH, H dx

which is readily evaluated. Thus finally

no/2y = 49.29 (3.51)

In closing, then, it is evident that when the critical or
linear buckling condition is reached the frequency of vibration is
zero and as the plate proceeds into the post buckled condition the
square of the freguency increases initially in a linear fashion with
the buckling parameter.

Further calculations with the perturbation method become
exceedingly cumbersome and are abandoned in favor of the power series
method of the next chapter. However, the present result is exact as
€ approaches zero since higher order expansions vanish for this con-

dition.



IV. THE PCOWER SERIES METHOD

Another possible means of solving the system of differential
equations presented here is to develop the solution in terms of a
povwer series. Again we borrow the results of Friedrichs and Stoker
for the solution of the static problem. The phrasing is slightly differ-
ent and some of the numerical computations used are only minor variations
of theirs.

The system of differential equations for the static case is

VW - i-(@‘W')' = 0 (2.11a)
Ho = - L (wwr) (2.11b)

2x

and the boundary conditions associated with them are

By(W;) = 0 (2.16)
By(W) = 0 (2.17)
35(¢) = -0 (2.19)

Iet the functions W and & be expressed in power series of

the coordinate x. These series are even functions in x.

b2y e ()
m=0

o = Z e (k.2)
m=0

It is easy to show by substitution in Equation (2.1la) and (2.11b) that

the coefficients 8gs 21> bo, and bl are, at this point, arbitrary and

28~
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that all of the other coefficients of the two series will be given

by the following recursion relationships.

m=1
1 . .
a. = i(m-i) a.b_ | (k.3)
m 5;22;:;5 im-i
i=1
m > 2
m=-1
b, =-—21-—-— Z i(n-i) aza_; (k. 1)
b= (m-1) ]

In terms of the coefficients in the power series, the previously

stated boundary conditions become

) g =0 (4.5)
L
z mzm - 1+v)a =0 (4.6)
1
ym(m-l-v)bm=-£;ﬂ (5.7)
1

It is evident that Equation (4.5) serves only to determine
the coefficient g after the others have been computed. The two equa-
tions (4.6) and (L.7) must be solved simultaneously for the values of
a, and bl‘ The value of the coefficient bo rema&ns arbitrary and this
is as might be expected since the stress function & can in general be
varied with respeet to as much as an arbitrary linear function of the
cartesian coordinates without affecting the stresses.

Hence, in principle, once the value of XA is specified, it is

possible to obtain all of the necessary coefficients in order to be

able to describe the complete solution for the static case.




For the dynamic case the differential equations to be solved

are

2 , . 2
(V2 - E_)E ool (o:wl )" + B o™
x° X x2
(2.122)
2 "
LY+ E N - = 0
X x2
2.2 2
(P -2 = - d (W) - B wB] (2.12D)
%2 X %2
The associated boundary conditions™ are
B, ( Oy
LGP = 0 (2.20)
Bo(w) = 0 (2.21)
n

The solution of the above differential equations may be ex-
pressed as power series in x. Upon calculating with the power series
by the usual methods, it becomes clear that the solutions which are not

singular at the origin are

2]
. ‘nt ’
W\,n} = Xn T‘ f'\‘-n*"xam (\)4',8‘)
L, o

and

5= an dén)x’&n (h.9)
0

m

The recursion relationships for all values of n +that evolve from this

system are, after dropping the superscripts for ¢ and 4,

* For n > 2 the number of boundary conditions increases to four.
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c = 1 (n),
m 16m(m-1 ) (m+n ) (m+n-1) {u m-2

m
+ (2m+n-2) Z 2i(n+2m-21)(aidy_; +biep ;)

i=1

m

-n° z 2i(21-1)(ady_ i+ bicp i)}
= (4 10)
m > 2
m

4G =- . (cm+n-2 2i(n+om-21) a.c. .
- 16m(m-1)(m+n)(m+n-1) { i )izl HmE 1) 85Cp3

(4 11)
- n° ZEi(Ei-l) ajey i}

while the coefficients cg, ¢, dp, and d; remain, at this point, undeter-
mined.
In terms of these power series, the boundary conditions for

the dynamic problem assume the following form:

o

v
¢y = O (k. 12)

mZ;O

Z [(emtn) (2min-1+v) -vne]cm = 0 (4. 13)

m=0

y [(2m+n)(2m+n-l—v)+vn2]dm = 0 (k. 14)

=1

It is readily verified by examination of the recursion rela-
tion in the cases when n = O and n = 1 that dg will not appear in the
problem and this 1s again plausible in view of the remark made in con-

nection with bo.
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The boundary conditions thus present a system of homogeneous
linear algebraic equations in the three unknown coefficients Cqr Cq» and
dl, as well as of the eigenvalue p. The explicit form of the character-
istic determinental equation associated with this system is, by virtue
of the form of the boundary conditions and the recursion relations,
probably unattainable. In any case, no particular benefit would be
derived from it since a numerical solution will have to be attempted
and the appropriate algorithm can be stated in terms of these egquations.

The solution of this system of equations is to be performed
on a digital computer in the following manner. An arbitrary value,
such as unity for example, is assigned to the coefficients €ys €1 and
dl‘ The remaining coefficients in the power series expansion are
determined by the recursion relationship. A generic term in the
series depends upon Cor ©1 and dl and polynamials in terms of p.

Briefly then, each coefficient in the power series is the sum of

three polynomials in p, the coefficients of these polynomials being
the constants Cqs C1 and dl respectively. The various coefficients
can be generated and their polynomial representation is substituted
into the boundary equations (4.12), (4. 13) and (4. 14). Theoretically
at least, each equation is composed of infinite series a;. in . having

1dJ

as their coefficients Cgs €7 and dl. In matrix notation

AB = 0 (4.15)
where A = {alj} i,J = 1,2,3
c
0
and B = j;l
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This system of equations will admit a nontrivial solution when the
determinaent of the coefficient matrix A is zerv. This determinant
is equivalent to a power series in u whose roots represent the
required eigenvalues,

Clearly the procedure here must be modified to truncate
this process. The coefficients of the power series of w and ¢ are
computed until a particular term becomes less than a designated
value. However, convergence at this point alone is not necessarily
the final test. Satisfying the boundary conditions yields an approx-
imation to the aij in that they are now polynomials, It should be
noted that the first neglected temm, for instance, provides, in general,
a contribution to all the previously computed coefficients in aij-
However, the system was sufficiently convergent to insure convergence

in this sense. The a;s are polynomials in p of order m/2 to the

J
nearest integer when m terms are taken in the power series. It
is quite clear then that the determinant when expanded is capable
of ylelding a polynomial whose order is three times that of the
order of the aij' This determinant may be expanded algebraically,
by the computer, producing a polynomial characteristic equation which
must be solved for the roots, by standard methods.

Generally, about sixteen terms in the power series produced
sufficiently convergent terms in the aij and it sufficed to take five
or six terms in the characteristic equation to obtain the roots. For

very large penetration of the post buckling domain the size of the

numbers involved and the number of terms reguired for the necessary



z
_zh..

accuracy reguired a modification of +his technigue due to fthe limita-
tions imposed by the avallable computer.
The modified procedure consisted of an iteration procedure

one step earlier in the above process. The a were evaluated using

ij
trial values for u and then checking to see if the determinant is zero.

Computing time of this iteration procedure was approximately eight

. o I
times longer than by the first method.

* Weinitschke(26) who faced =z simil r computation in connection with a
problem in shells chose to use several power series expansion ezch being
vz11id in pert of the region =znd then msitching them togesther., By thi
means fewer terms in each series were reguired for convergence.

¢

3}



V. RESULTS AND DISCUSSICN

The penetration of the post buckling domain is measured by
A, a ratio of the edge displacement to that required for the initial
instebility. Friedrichs and Stoker(lz’lj) use a parameter Aq based
upon a stress ratio. For convenience the results here are expressed
in terms of i; Figures 4 and 5 show the relation between the two param-
eters. The main result offered here is the relation between u (the
squared frequency paremeter) and A. Figure 1 shows the relation for a
symmetric mode (n = O) and the first mode having a nodal diameter (n = 1).
The details of this relation in the vieinity of X = 1, the early stages
of penetration of the post buckling domain, are shown in Figure 2. In
Figure 3% the shapes of the modes of vibration are depicted. The data
used in plotting Figures 1, 2 and 5 and further information are given
in Table I.

The fact that p  increases linearly with X in the vicinity
of initial iInstability for the symmetric mods as shown by the power
series analysis i1s borne out by the perturbation analysis. From Figure
2 the numeric value of the slope is fifty which compares rather well
with the results of Equation (3.49), i.e. 49.29, It is interesting to
observe that after some increase in A the freguency of the nonsymmetric
mode is lower than that of the symmetric mode. Examination of the modes
for the symmetric case shows that at a value of A between 13 and 19 a

nodal circle appears for the lowest frequency. Near this value of A

¥ A1l ealculations are based upon the value of Poisson's ratio v = .318.

=35
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the fregquency of the axially symmetric mode incr=ases less rapidly and
eventually becomes again less than that for n = 1. This behavior of
the frequencies is reasonable inasmuch as the nonsymmetric mode is
essentially inextensional while the symmetric mode is essentially
extensional and conseguently the frequencies of the symmetric mode can
become greater than those for n = 1. Upon the appearance of the nodal
circle in the n = O mode, this mode also becomes essentially inextensional
and the frequency increases at a lesser rate while X\ 1is increased.
Under these circumstances the frequency can, and does, become less than
that for n = 1. Apparently the freguency reaches an asymptotic value as
A 1is increased. It should be noted, however, that as A becomes large
the accuracy* of the results becomes less certain but in any case they
also become less meaningful because by the time A reaches values
approaching o the equilibrium configuration is in, what Friedrichs
and Stoker call, the asymptotic range. In this range the plate has
been stretched as a membrane except for a narrow boundary layer at the
edge where large bending stresses occur. That a plate could reach such
g state is subject to question on practical grounds, in particular, if
one considers the effect of imperfections upon the behavior of the ideal
plate considered here. Also the onset of plastic yielding or secondary
buckling is likely tc invalidate these somewhat academic results.

A very significant result is that, in the range of computations,

the frequency of vibration does not return to zero for A > 1. This implies

* Accuracy was determined by the amount the deflection at the edge differed
from zero with respect to the magnitude of the largest deflection. For

good ﬁesults this amounted to one part in 108 while for poor results one part
in 107,



that, at least within the limitations imposed here on the nature of
the assumed vibration modes (i.e. small amplitude .ibration), the
positive definiteness of the potential energy and hence the stability
of the buckled configuration is unchanged if only expansions up to

the second power in the terms representing the additional neighboring
deflections are ineluded. It appears likely that this is true also

in relation to higher modes. Consequently the experimentally observed

phenomenon of secondary buckling(lg)

cannot be explained in terms of a
simple branch point. Research delving into this matter is continuing
and attention is directed at the possibility of a discontinuous snap-
through to a position of lower potential energy. This becomes possible
when the guadratic form introduced in reference (19) loses its positive
definite character. This is indeed the case as pointed out in the

paper, reference (19). The problem of secondary buckling therefore

shows great similarity with that of buckling of certain types of shells.
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Figure 1. The Relation Between the Frequency
Perameter p and the Load Parameter A.
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APPENDIX A

THE DYNAMIC BOUNDARY CONDITIONS FOR THE CASE n = 1

The boundary conditions for the case n = 1 require some
special consideration. The condition of "simple" support requires
that the lateral deflection as well as the radial bending moment at
the oultside edge be zero. To camplete the boundary conditions, some
requirements must be imposed on the membrane displacements or the
membrane stresses (indirectly, through the stress function) or a combi-
nation of both. In general, two more boundary conditions are reguired,
but due to the obvious symmetry in the case n = 0, only one is required
beyond the implications of symmetry.

Consider now the details of the case n = 1. For simplicity,
the superscripts are omitted inasmuch as this discussion is for a
specific case.

The stress function for n = 1 is of the form

¢ = ¥(x) cos ©
while the lateral dispiacement is
w = w(x) cos ©

From the strain displacement equation it follows that

ov
— = Xe - u
36 ee
and
dv o ax ox

=h3.
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The stress strain equations, utilizing the expression of the stresses

in terms of the stress function imply that

1
ey = [; V' o~ ig Y - vW"] cos ©
and
— " 1 ' 1
oo = " - V(;‘W -z ¥] cos 6

[ - v(E)'1 cos o

where primes mean differentiation with respect to x.
Hence
u . [(% ¥v) - vy" - W'w'] cos @ (A.1)
X

and upon integration

u = [y vy - [ Wwwax] cos 6 + F(6)  (A.2)
Further
X xy -v(if)'] cos © - [%w - vy
o0
(A.3)
- ] W'w'dx] cos @ - Fl(Q)
and thus
_ 1 ! s 1
v o= x[V —V(%) lsino - [=V - vy
(A1)
- [ W'w'dx] sin @ - F5(0) + G(x)
where
ary F, (A.5)
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However,
1 ou W 3w _ . 1 op
2 = = ee— 4 _— — = ={]l + e
“x0 x 00 ax (x) x dx 00 k ) ox (x ax)

Upon substitution of the appropriate gquantities in the above expression

and simplifying the following is obtained:

2 wo_ ¥ 1 .
+ - & WY -« = W'w
(;g xV — W = ) sin ©
(A.6)
1 ,4F Gy'
+ = + F + xl= = Q0
L(Z1 e« x(@)
Equation (A.6) must hold for all x and © and it can be shown that the

required necessary and sufficient conditions are

x(ég + xy" - Ny 2 L W'w) = =2C (A.T)
X X X
dFy
Eg— + F, = 3Dy + 2Csin ® (A.8)
G\l
(2T = -3, (4.9)

Equation (A.7) is satisfied if ¥ satisfies the compatibility equation
associated with the von Kérmeh system of equations. Equation (A4.8) will
be satisfied if F2 satisfies

2
22 + F, = 3D, + 2Csin 6 (A.10)

a6°

The solution of Equation (A.10) is

Fp = - Cjcos ©+ Cpsin @+ 3D; - ® cos © (A.11)



from which it follows, by Equation (A.5), that

F, = C; sIn 6+ C, cos & + C(6 sin 6 - cos @) (A.12)

The solution of Equation (A.9) is

¢ = 21 + px (A.13)
X

Consequently the displacement components become

u(l) = (£ - J Wiwax + Cy) cos 6 - C{ sin © + C(6 sin @ - cos @)
(A.1h)
v(l) = (g+ [ W'w'dax - Cp) sin © - Cy cos @ ~ 3Dy + CO cos ©
+ Bl + Dx
&2
wvhere
= (1 . _ .
£ E Gv-w) ;o= W) -vr ()
g =[x - (1) L1 = y(2) - (1v)w(2)
and f+g=2= v - V(Y)']
X X x=1

Consistent with Equation (2.19) (and hence without any signifi-
cant loss of generality) let
Cl = 0
Single valued displacements and regularity conditions at the origin, re-
quire that C = 0 and Dl = 0
For n = 1, from Equation (2.22)

A1 cos ©

v(l) = B; sin @ + B¥

u(1)

(A.15)
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Consequently D = B*
and

T - [Wwidx+ Cp = A (A.16)

g + [Wwax - Cp By (A.17)

In addition to the conditions imposed by the simple support at the edge

it is sufficient to require that

f + g = 0 (A.18)
which by the use of (A.16) and (A.17) implies that
and it must also be noted that
egg(l) = f+¢g
and hence Equation (A.18) implies
egg(l) = 0 (A.20)
which is the boundary condition used in the main text.
For the power series approach
= «(1) S;' 2m+3
= = QX + O b'd A.21
14 ¢ 1 o L Ay ( )
m=

where, for convenience of this discussion, ay and a, are the arbitrary
constants and d, is chosen as unity. It is easily shown that (f + g)
does not depend upon Qj. 'Furthen none of the stresses depend upon Q.
Imieed, none of the stresses depend upon 0y, and further it can be
shown that a7 and Co can be combined as a single constant CZ. To
demonstrate this, substitute the expression for ¥ into f and g and

the associated eguations., Thus from Equation (A.16)

Co + (1-v)ap + ap X [1-v(em3)] dp - [ Wiwtdx = Ay (A.22)



is obtained and by the use of Equation (A.17) and
- C, - (l-v)ocl + Q, Z [{(2m+3)(2m2) - (1-v)] a + Jwwax =B, (A.23)

Let
C, = Cp+ (1-v)oy

In terms of the power series solution

f + g=o0, 7 (2m+3-v) (2m+2)dy

Consequently (f + g) is independent of Qq.- Further, it can be seen that

Equation (A.23) then serves to determine C;.



APPENDIX B
THE VIBRATIONS COF THE SIMPLY SUPPORTED CIRCUILAR
PIATE WITH EDGE CCMPRESSION
(Linear Theory)

During the course of the present investigation, the linear
problem of plate vibration in the presence of radial edge compression
was solved. The same problem for a clamped edge plate was treated by
Federhofer.(B) The boundary condition here is that of simpie support.
The relevant equations arose in connection with the perturbation solu-
tion and are repeated here for convenience.

The differential equation, after separation of variables,
is similar to Equation (3.31),

(P -2 Py an(? -2 @ - = 0 (3.1)
%2 o 0 2 o oo

and the associated boundary conditions are

]
o

By () (3.32)

(3.33)

]
O

Bo(v7)

The solution to this equation is

©

n (m)
v, o= Zbao wzm (3.34)

where
In(Bn ) rm
v g (™) - B2 1 L1 (g7 x) (3.35)
° nE 1 (87 =5

which immediately satisfies Bl' This eigenvalue problem is governed by

the characteristic equations obtained in the usual fashion from the

=4o-



boundary conditioms,

I (BT™) [ (emt 14y )8R, (BR®) - (BF™)20,o(B2™)]

(3.36)
+ 3 (BEM (204140 )BT, (BT™) + (BTMPI, o (B5™)1 = o©
where agm and agm are related to A T(i.e., o) and p™@ by
2
B - ™) = «
2 1 (B.2)

nm
W= (B2 (p™)2
Since only the linear problem is considered here subscripts on A and ¢

are omitted (which in Chapter III had meaning in connection with the

perturbation solution). For the linear buckling problem

- o (B.3)

and 1t may be shown this is equivalent to

) = 0
L (B.4)
m  _
B, a
and Equation (3.36) becomes
(2n+14v )T, 1 (B™) - 8™ T pn(B™) = © (B.5)

where n designates the number of nodal dismeters and m +the number
of nodal circles.

The roots of the characteristic egquations were obtained for
several values of n and m by a high speed digital computer using
a step-by-step searching method followed by an interval halving method

until the roots were reproduced within specified limits In Tabie I.




and III roots of Equation (3.36) are tabulated for several values of
n, m and @ For the axially symmetric mode the ca=s of free vibration
and of buckling was solved for a number of roots. These results are

presented in Table 1V.
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TABLE I

VARIOUS VALUES COF X, Ag

FREQUENCY PARAMETERS 1 FOR n = O, n = 1 FOR

A

A

S

H

n=0 n=I
1.000U1 leUULUU Ue 000 1316410
1.00009 1eUU0U1 0eUUL 131412
1400017 1eU0UO3 0e0UY 131e414
100034 100005 0eU17 1314419
1.00067 100010 OeU33 1316427
1400101 1.000615 04050 1314435
1.00402 1.0U0059 0e198 131.511
1.00887 1.00129 Oe&37 1314632
101574 1.00229 0775 131.804
1602462 1.U0359 1e213 1324626
103552 1.00517 14750 1324299
104846 1.00705 2387 1324623
1406343 1600923 3.124 132998
1.08029 1.01168 34954 133,420
1.09886 leUl437 44869 133,886
141138 105927 206258 1416735
1498215 1.13931 484371 1564161
2.91311 126498 944,298 1790920
4.15896 1642499 155952 2124109
4042706 1445835 169243 219,088
6631125 1.68353 2624640 2684598
7411236 1le 77494 302177 289,862
957456 2.04258 4214501 395,833
1125514 2421547 4994317 401278
13686542 2447114 610406 4724235
1960922 2499070 7944910 629174
29017450 3.76396 9484097 B864156
33,88582 4411459 9884571 10084043
42429802 4470397 10354067 12134347
50615607 522066 10614999 13884049
6101744 589279 1091762 1603.025
7096683 6047418 1122.798 1774.656




TABLE II

ROOTS OF THE CHARACTERISTIC EQUATION FCR
VIERATION OF THE CIRCULAR PLATE WITH EDGE

CQMPRESSION-LINEAR PROBLEM, n = O,

172 BB
a B, Bz H =05 P,
m=0
0.0 242274580 242274580 44961569
045 2.1656121 24222583 44813253
1.0 149663810 242060495 44337934
l1e3 1.7594769 241876378 3.849098
1e5 145675703 2.1696259 34401041
1e6 1.4482550 2.1581109 3.125495
1.8 11342579 241275669 24413210
2.0 045716016 2.0800789 1.188976
200600017 0.0 240600017 00
m=|
0.0 544535042 504535042 29.740708
0.5 544302508 544532215 29.612360
1,0 543598667 544523547 294223895
l1e3 542942696 564515402 28,861924
1e5 562404103 54508624 284564755
le6 5.2103511 544504824 284398927
1.8 5.1437857 544496359 284031759
240 5.0683233 504486605 274615572
3,0 445398584 544415361 24.703803
440 3.6705019 5.4288658 19926662
540 2.0548660 504057816 11.108157
543928115 0.0 5.3928115 0.0
m=2
040 8.6125308 8.6125308 744175687
045 8.5979338 846124599 744049359
1.0 845539953 B.6122493 734669139
1e3 85133691 8.6120528 73.317583
1.5 8.4802543 8.6118938 73.031049
le6 8.4618651 8.6118037 724871920
1.8 8+4213943 846116133 72521791
2.0 843759155 8.6113856 72.128238
3.0 8.0702978 8.6098611 690484143
44,0 746216586 8.6075363 654603703
540 7.0022717 Be6041740 60268764
640 601602463 845993392 524974048
740 449827378 845923034 42.813195
8.0 3.1059983 845817962 264655044
Be5739849 0.0 85739849 0.0
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TABIE IIT

ROOTS OF THE CHARACTERISTIC EQUATION FOR
VIBRATION COF THE CIRCULAR PIATE WITH EDGE

CMPRESSICN-LINEAR PROBIEM, n = 1

a B B = BB
| 2 H= PP
m=0
0.0 347310427 3.7310427 1349206793
045 346964372 3.7301003 13.788082
leU 3459064497 3.7271555 134382351
1.3 3,4900374 3.7242934 12997923
1.5 3.4061925 3.7218474 12677329
1e6 3,3588249 347204441 12496320
1.8 3.2523577 347172343 12.089775
2.0 3,1288098 3.7134150 11618569
3.0 2.1309236 3.6797875 7.841346
3.6306551 040 346306551 0.0
m=|
040 649641241 6.9641241 484499024
045 6+9460158 649639885 484371974
140 6.8914081 69635843 47.988901
1.3 648407772 69632056 47+6>3738
1.5 647994036 649628938 474343525
1.6 67763914 649627209 47.182122
1.8 647256276 69623320 464826052
2.0 646684310 69618944 660424912
3.0 642789499 69588226 43,694098
4.0 5.6882904 669538944 394555770
Se0 4.8217636 669461792 33.492834
640 3.4752368 649337776 26464096519
669151434 0e0 346306551 0e0
m=2
0.0 10138746 10.138746 102794170
0e5 1041262940 | 101386306 | 102.666754
1.0 10.0890692 1101385068 | 102.288096
1.3 10.0546935 |10.1383855 | 101.938358
1e5 100267117 |10.1382912 | 101.653723
le6 100111877 |10.1382384 | 101.495807
1.8 99770459 |10.1381185 | 1014148473
2.0 9.9387485 |10.1379842 | 100758874
3.0 946829959 |} 1041370810 984157313
4.0 943130618 |1041357349 944394726
540 848144723 |10.1338503 894324523
660 B.1635122 ]10.1312850 82706868
7.0 73193063 |1041277957 744128439
8.0 602028258 |10.1229961 670791182
101054066 040 101054066 040




TABLE IV

VALUES OF BUCKLING AND FREQUENCY ASSOCIATED

PARAMETERS FOR n = 0O
1/2 [3 /3

m Q 'BI 'Bz H =P Py
0 20600017 262274580 449615690
1 53928115 54535041 29¢74Q707
2 865739849 866125307 74175685
3 11733336 11.761687 138433727
4 14.885062 14,907513 222023394
5 18.033223 18.05181¢6 325486805
6 214179422 21.195296 449,4,24056
7 240324426 244338273 59235151
8 27468644 27480928 755620139
9 306612324 304623355 937.78984
10 33,755613 33,765622 1140.1172
11 36.898613 366907774 136c¢1837
12 40,0641390 40,049857 16039910
13 43,183997 43,191848 186545357
14 466326466 46.333817 214648225
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